InfluxDB Docs

Handle duplicate data points

InfluxDB identifies unique data points by their measurement, tag set, and timestamp (each a part of Line protocol used to write data to InfluxDB).

web,host=host2,region=us_west firstByte=15.0 1559260800000000000
--- -------------------------                -------------------
 |               |                                    |
Measurement   Tag set                             Timestamp

Duplicate data points

For points that have the same measurement name, tag set, and timestamp, InfluxDB creates a union of the old and new field sets. For any matching field keys, InfluxDB uses the field value of the new point. For example:

# Existing data point
web,host=host2,region=us_west firstByte=24.0,dnsLookup=7.0 1559260800000000000

# New data point
web,host=host2,region=us_west firstByte=15.0 1559260800000000000

After you submit the new data point, InfluxDB overwrites firstByte with the new field value and leaves the field dnsLookup alone:

# Resulting data point
web,host=host2,region=us_west firstByte=15.0,dnsLookup=7.0 1559260800000000000
from(bucket: "example-bucket")
  |> range(start: 2019-05-31T00:00:00Z, stop: 2019-05-31T12:00:00Z)
  |> filter(fn: (r) => r._measurement == "web")

Table: keys: [_measurement, host, region]
               _time  _measurement   host   region  dnsLookup  firstByte
--------------------  ------------  -----  -------  ---------  ---------
2019-05-31T00:00:00Z           web  host2  us_west          7         15

Preserve duplicate points

To preserve both old and new field values in duplicate points, use one of the following strategies:

Add an arbitrary tag

Add an arbitrary tag with unique values so InfluxDB reads the duplicate points as unique.

For example, add a uniq tag to each data point:

# Existing point
web,host=host2,region=us_west,uniq=1 firstByte=24.0,dnsLookup=7.0 1559260800000000000

# New point
web,host=host2,region=us_west,uniq=2 firstByte=15.0 1559260800000000000

It is not necessary to retroactively add the unique tag to the existing data point. Tag sets are evaluated as a whole. The arbitrary uniq tag on the new point allows InfluxDB to recognize it as a unique point. However, this causes the schema of the two points to differ and may lead to challenges when querying the data.

After writing the new point to InfluxDB:

from(bucket: "example-bucket")
  |> range(start: 2019-05-31T00:00:00Z, stop: 2019-05-31T12:00:00Z)
  |> filter(fn: (r) => r._measurement == "web")

Table: keys: [_measurement, host, region, uniq]
               _time  _measurement   host   region  uniq  firstByte  dnsLookup
--------------------  ------------  -----  -------  ----  ---------  ---------
2019-05-31T00:00:00Z           web  host2  us_west     1         24          7

Table: keys: [_measurement, host, region, uniq]
               _time  _measurement   host   region  uniq  firstByte
--------------------  ------------  -----  -------  ----  ---------
2019-05-31T00:00:00Z           web  host2  us_west     2         15

Increment the timestamp

Increment the timestamp by a nanosecond to enforce the uniqueness of each point.

# Old data point
web,host=host2,region=us_west firstByte=24.0,dnsLookup=7.0 1559260800000000000

# New data point
web,host=host2,region=us_west firstByte=15.0 1559260800000000001

After writing the new point to InfluxDB:

from(bucket: "example-bucket")
  |> range(start: 2019-05-31T00:00:00Z, stop: 2019-05-31T12:00:00Z)
  |> filter(fn: (r) => r._measurement == "web")

Table: keys: [_measurement, host, region]
                         _time  _measurement   host   region  firstByte  dnsLookup
------------------------------  ------------  -----  -------  ---------  ---------
2019-05-31T00:00:00.000000000Z           web  host2  us_west         24          7
2019-05-31T00:00:00.000000001Z           web  host2  us_west         15

The output of examples queries in this article has been modified to clearly show the different approaches and results for handling duplicate data.